If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=-16t^2+120t+6
We move all terms to the left:
0-(-16t^2+120t+6)=0
We add all the numbers together, and all the variables
-(-16t^2+120t+6)=0
We get rid of parentheses
16t^2-120t-6=0
a = 16; b = -120; c = -6;
Δ = b2-4ac
Δ = -1202-4·16·(-6)
Δ = 14784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{14784}=\sqrt{64*231}=\sqrt{64}*\sqrt{231}=8\sqrt{231}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-120)-8\sqrt{231}}{2*16}=\frac{120-8\sqrt{231}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-120)+8\sqrt{231}}{2*16}=\frac{120+8\sqrt{231}}{32} $
| 14b−11=13b+5 | | 2x-8+1x+17=37 | | 7(x+5)-1=6(x-6) | | -8x-6=-3(x-8) | | -6+5h=-4+3h | | -1x+4=1x+8 | | 7(×+5)-1=6(x-6) | | (3x-1)^2=16 | | -1x+8=1x+4 | | -8b=-9b+10 | | 30/40=x/3 | | H-3-h=h-34 | | 8y-20y^2=5y | | 4x=5/185 | | -1/2x+4=1/2+2 | | -7^2x=-84 | | 1/2(2x−6)+5=23x+9+7/3x | | 1/2x+(x-35)+(x-46)+x=360 | | 26=46-7(-2-1w) | | 0.14n=84 | | -7x2x=84 | | -7•2x=-84 | | 12(2x−6)+5=23x+9+7/3x | | –8b=–9b+10 | | -0.5(2x-8)=0.4+1.2x | | -7*(2x)=84 | | 2/3(4x–5)=8 | | -7*2x=-85 | | 5f=4f+6 | | -t/3+2=26 | | -1/2x+10=-2/4+5 | | A=(1/2)(b₁+b₂) |